Modbus Module

Modbus Registers

<table>
<thead>
<tr>
<th>#</th>
<th>Register</th>
<th>Register Type</th>
<th>Data Type</th>
<th>Result</th>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>discreteInput</td>
<td>boolean</td>
<td>Modbus Data Ready</td>
<td>C6= default.cfgx</td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>inputRegister</td>
<td>int32</td>
<td>Current Configuration Sample Count</td>
<td>C6= default.cfgx</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>inputRegister</td>
<td>float</td>
<td>Nitrogen: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>inputRegister</td>
<td>float</td>
<td>Air: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>inputRegister</td>
<td>float</td>
<td>Oxygen: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>inputRegister</td>
<td>float</td>
<td>H2: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>inputRegister</td>
<td>float</td>
<td>Methane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>83.02</td>
</tr>
<tr>
<td>8</td>
<td>inputRegister</td>
<td>float</td>
<td>Carbon Dioxide: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>2.02</td>
</tr>
<tr>
<td>9</td>
<td>inputRegister</td>
<td>float</td>
<td>Ethane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>7.45</td>
</tr>
<tr>
<td>10</td>
<td>inputRegister</td>
<td>float</td>
<td>Propane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>4.39</td>
</tr>
<tr>
<td>11</td>
<td>inputRegister</td>
<td>float</td>
<td>i-Butane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0.83</td>
</tr>
<tr>
<td>12</td>
<td>inputRegister</td>
<td>float</td>
<td>n-Butane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>1.08</td>
</tr>
<tr>
<td>13</td>
<td>inputRegister</td>
<td>float</td>
<td>i-Pentane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>14</td>
<td>inputRegister</td>
<td>float</td>
<td>n-Pentane: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>inputRegister</td>
<td>float</td>
<td>Hexane Plus: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>16</td>
<td>inputRegister</td>
<td>float</td>
<td>Water: Raw (unnormalized) Amount</td>
<td>C6= default.cfgx</td>
<td></td>
<td>1.618</td>
</tr>
</tbody>
</table>

Modbus Server

- Modbus Server started on TCP interface

Copyright 2019, Diablo Analytical, Inc.
Diablo EZReporter 4.0
Modbus Module

Copyright 2019, Diablo Analytical, Inc. All rights reserved.

This software and documentation are copyrighted by Diablo Analytical, Inc. All other brands or product names are trademarks or registered trademarks of their respective owners.

Diablo Analytical, Inc.
5141 Lone Tree Way
Antioch, CA 94531

Phone: 925-755-1005
Fax: 925-755-1007

E-mail: support@diabloanalytical.com
Home Page: www.diabloanalytical.com

Manual Revision 20190502-1515
LICENSE AGREEMENT

IMPORTANT: Please carefully read the License Agreement below before installing the software. The right to use this software product is sold only on the condition that the customer agrees to the following license. INSTALLING THE SOFTWARE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS.

In return for payment of the one-time license fee for this software product, Customer receives from Diablo Analytical, Inc. (Diablo) a license to use the product subject to the following terms and conditions:

Use: The product may be used one computer or workstation. A separate license agreement and fee is required for each additional computer or workstation on which the product is used. Customer may not reverse assemble, decompile, or modify the software.

Copies: The software product may not be duplicated or copied except for archive purposes, program error verification, or to replace defective media, and all copies made must bear the copyright notices contained in the original.

Ownership: Purchase of this license does not transfer any right, title or interest in the software product to Customer except as specifically set forth in this License Agreement. Customer is on notice that the software product is protected under copyright laws.

Transfer of Rights: This license and the software product may be transferred to a third party, with prior written consent from Diablo, provided the third party agrees to all the terms of this License Agreement and the Customer does not retain any copies of the software product.

Sublicensing and Distribution: Customer may not sublicense the software or distribute copies of the software to the public in physical media or by telecommunication without the prior written consent of Diablo.

Termination: Diablo reserves the right to terminate this license upon breach. In event of termination, Customer will either return all copies of the product to Diablo, or with Diablo's prior consent, provide Diablo with a certificate of destruction of all copies.

Updates and Upgrades: Customer agrees that the software does not include updates and upgrades which may be available from Diablo in a separate support agreement.

Export Restrictions: Customer agrees not to export or re-export the software or any copy in violation of the U.S. Export Administration regulations or other applicable regulation.

LIMITED WARRANTY

Limited Warranty: Diablo warrants that the original disks are free from defects for 90 days from the date of delivery of the software.

No Other Warranties: To the maximum extent permitted by applicable law, Diablo expressly disclaims any warranty for the software product. The software product and any related documentation is provided "as is" without warranty of any kind, either express or implied, including, without limitation, the implied warranties or merchantability of fitness for a particular purpose. The entire risk arising out of use or performance of the software product remains with the customer.

Limitation of Liability and Customer Remedies: Diablo's entire liability and the customer's exclusive remedy under this license agreement shall be, at Diablo's option, either (a) return of the price paid for the software or (b) replacement of the software that does not meet Diablo's Limited Warranty and which is returned to Diablo with a copy of the customer's receipt. Any replacement software will be warranted for the remainder of the original warranty period, or 30 days, whichever is longer. These remedies are not available outside the United States of America.
No Liability for Consequential Damages: To the maximum extent permitted by applicable law, in no event shall Diablo be liable for any damages whatsoever (including, without limitation, damages for loss of business profit, business interruption, loss of business information, or any other pecuniary loss) arising out of the use or inability to use the product, even if Diablo has been advised of the possibility of such damages. Because some states/jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.
Contents

Introduction

Overview ... 1
Modbus Module Speciﬁcs ... 1
Installation ... 2
Licensing and Activation ... 3
What is Modbus ... 3
About Modbus Registers ... 3

Configuring the Modbus Module .. 5

Configure Server Settings .. 5
Server Settings ... 6
Modbus Register Settings .. 7
String Register Settings ... 8
Modbus Parameter Alarm Settings .. 8
Add or Edit Register .. 8
Add a Single Register .. 9
Add Component Registers ... 12
Edit a Register .. 14
Delete Registers .. 15

Using the Modbus Slave Server ... 17

The Modbus Module Panel .. 17
The Modbus Register Table ... 18
Rearranging the Register Table .. 19
Starting the Server ... 19
Windows Firewall Exceptions .. 19
Modbus Server Status ... 20
Network and Firewall Considerations ... 20
Stopping the Server ... 21
Exiting EZReporter ... 21
Updating Register Results .. 21

Additional Options .. 22
Print Modbus Conﬁguration Report .. 22
Save Modbus Conﬁguration Report ... 23
Copy Modbus Table to Clipboard .. 23
Import Modbus Conﬁguration ... 23
Export Modbus Conﬁguration ... 23
Backup Modbus Conﬁguration .. 23
Display Connection Statistics .. 24

Index .. 25
Introduction

Overview

The EZReporter 4.0 Modbus Module is an optional module that adds Modbus TCP Slave functionality to any of the EZReporter 4.0 editions. Most numeric results that are calculated and reported in the edition of EZReporter you are running can be assigned to a Modbus register for a Modbus Master to read.

Modbus Module Specifics

The Modbus implementation provided by the EZReporter 4.0 Modbus Module includes the following:
• Implements Modbus TCP only. Modbus via serial communications (RS-232, RS-422, RS-485) is **not** currently supported.

• Supports both Modicon and Enron/Daniel addressing.

• Supports both single-precision Float and Int32 data in addition to standard Discrete/Bit/Boolean and Int16 data. With Modicon register addressing sequential registers are used for Float and Int32 data, and the upper and lower sets of bytes can be swapped.

• String results can be encoded as either UNICODE (UTF16) characters with 1 16-bit character per INT16 register, or as ASCII (UTF8) characters with 2 8-bit characters packed into each INT16 register.

• Most Modbus registers are read only input registers or input discretes. However selected results are defined as Modbus output coils and holding (read/write) output registers.

Installation

Because of the very specialized nature of the Modbus module, it is not installed by default. If you want to enable Modbus functionality, you must select “Customized Setup” during installation, and then check the “Modbus Slave Server” option:
Licensing and Activation

The EZReporter 4.0 Modbus Module is active when running in “Trial” mode. After you have activated your license, the Modbus module will only be active if the Modbus module was included in the license that you purchased. You may add the Modbus module to any existing EZReporter license by purchasing a license for the module, and then reactivating the license using your original serial code. See the EZReporter 4.0 Software License Guide for more information.

What is Modbus

From the Frequently Asked Questions (FAQ) page of the Modbus organization’s web site:

“Modbus Protocol is a messaging structure developed by Modicon in 1979. It is used to establish master-slave/client-server communication between intelligent devices.”

http://www.modbus.org/faq.php

Modbus provides a standard way to transfer data between a data generating device like EZReporter (the Slave) and a data consuming device like a programmable logic controller (PLC), human-machine interface (HMI), supervisory control and data acquisition system (SCADA), or other process control system.

A more detailed description of Modbus is beyond the scope of this manual. Visit the Modbus organization’s web site using the link above for more information.

About Modbus Registers

With Modbus, a Slave device makes data available to a Master device through a “Register” that exposes numeric data held in an internal data table. Each register in each data table has a unique address so that the Modbus Master knows how to access specific results.

Important: The Modbus standard defines 4 data tables, each with registers that can be addressed individually – two of those data tables hold read-only data (Input Discretes and Input Registers), while two hold read/write data (Coils and Holding Registers).

Modicon Floating Point and 32-bit Integer Support

The original Modbus standard only supported two types of data: 16-bit integer (Int16) and single-bit (Boolean/Discrete) data. Since signed 16-bit integers must fall in the range of -32,768 to +32,767, this provides a very limited option for
exchange of data - particularly since most of the results generated by modern analytical instrumentation are floating-point (for example, 1.23456).

Fortunately, since both single-precision floating-point data and 32-bit integer data can be represented by two 16-bit integers, it is possible to use two sequential Modbus Int16 registers to hold those integers. One complication is that there is no official standard for which register should contain which integer, and different Master devices may handle this “byte order” differently. To address this complication, the EZReporter 4.0 Modbus Module provides an option to swap Int32 and Float bytes.

Important: By default, the EZReporter Modbus Module limits Modicon register addresses for both the Holding/Input table and Coils/Discretes table to a range of 1-2000 in order to simplify management of the Modbus configuration.

Enron Floating Point and 32-bit Integer Support

Some Master devices support an alternative to the standard Modicon approach of using two registers to hold 32-bit Floats and Int32 data. This alternative approach is generally referred to as “Enron” or “Daniel” addressing. In this approach, 32-bit Floats and Integers can be held in single registers. However, the registers are restricted to specific address ranges:

- **Enron Int32 Address Range**: 5000-6999
- **Enron Float Address Range**: 7000-8999

Important: If you have added Float or Int32 results to your Modbus configuration and switch from Modicon to Enron or Enron to Modicon addressing, the Modbus Module will automatically re-assign the register addresses to the correct range.

String Support

Modbus string registers are supported for selected sample information/text results. The strings can either be encoded as ASCII/UTF8 characters with 2 8-bit characters packed into each INT16 register, or they can be encoded as UNICODE/UTF16 characters with 1 16-bit character per INT16 register. You set the length of the string (and thus the number of registers required) when configuring the register. If the actual length of the string result is longer than the specified string length, the string will be truncated.
Configuring the Modbus Module

Configure Server Settings

To begin using the Modbus module, you should first configure the Modbus Server and Modbus register addressing settings. Click the “Edit Settings” button located in the Modbus Server section of the main Modbus Module panel:

![Edit Settings](image)

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

![Stop Modbus Slave Server](image)

The Modbus Server settings can usually be left at their default values. However, it is very important that the Modbus Register Settings match the settings that the Modbus Master will use in order for the results contained in the registers to be read correctly. This is particularly important for “Float” and “Int32” results (which represent most of the results from EZReporter).
Server Settings

The following settings apply to the Modbus Slave Server.

TCP Port

This is the TCP port on which the Modbus Slave Server will listen for connections from a Modbus Master. The default port for Modbus TCP is port 502.

Timeout

This Timeout value is used by the Modbus Slave Server to determine if a Modbus Master is connected to the Server. If the timeout period expires without a message being transmitted from a Master, then the Slave assumes there are no Master devices connected.

The Timeout setting in milliseconds should be equal to or longer than the polling rate of the Modbus Master (the rate at which the Modbus Master checks for new results). If you set the Timeout to a value that is too short, then the Server may not be able to detect reliably when a Modbus master has connected. If you set the Timeout to a value that is too long, then the Server will not detect that the Modbus Master has disconnected until after the Timeout period has expired. The default Timeout value is 1000 milliseconds (1 second).
Slave ID
Each Modbus Slave device can be addressed by a unique ID number in the range 1-247. Make sure that the Modbus Master is using the correct Slave ID when connecting to the Modbus Slave. The default Slave ID is 1.

Host Name
The host computer name. This is a read-only value that cannot be changed.

Host IP Address
The IP address of the host computer. This is a read-only value that cannot be changed.

Note: The IP address displayed is for the primary network adapter, which is the first adapter in the binding order.

Data Ready Reset Interval
The Modbus Module provides a “Modbus Data Ready” result that the Modbus Master can use to detect when new results are available. The value of this Boolean result changes to “True” (1) after all of the Modbus registers have been updated when processing results. The value then changes back to “False” (0) after the Data Ready Reset Interval has expired. This setting is entered in milliseconds and should be long enough for the Modbus Master to detect, but shorter than the interval between runs and updating of results.

The default value is 1000 milliseconds. If you set this value to -1, the Modbus Data Ready register will be set to True/1 until it is reset manually by the Modbus master.

Automatically start Modbus Server on program startup
Check this box if you want the Modbus Slave Server to start automatically whenever you start EZReporter 4.0.

Modbus Register Settings
See “About Modbus Registers” on page 3 for details on Modbus registers and addressing.

Modicon Addressing
This option specifies the standard Modbus “Modicon” addressing protocol. 32-bit floating point and integer values are represented by two 16-bit integers placed in sequential registers. To accommodate Master devices with different expectations for which integer should be placed in which register, the Modbus module provides an option to swap the “byte order” for Float and Int32 data.

Enron/Daniel Addressing
This option specifies the alternative Enron/Daniel addressing protocol. If you choose this option, the Int32 and Float results will be restricted to the following specific register address ranges.

Enron Int32 Address Range: 5000-6999
Enron Float Address Range: 7000-8999

Important: If you have added Float or Int32 results to your Modbus configuration and switch from Modicon-to-Enron or Enron-to-Modicon addressing, the Modbus Module will automatically re-assign the register addresses to the correct range.
Modbus Address Shift

Some Modbus Master devices may start counting the location of data in the data tables at 0, while others may start counting at 1. The Modbus Address Shift setting allows you to account for these “counting” differences. In general you will use either a value of “0” (typically for PLCs) or “-1” (the default value).

String Register Settings

The following settings define how strings are packed into Modbus Int16 registers

UNICODE (UTF16)

The string is encoded as UNICODE/UTF16 characters with 1 16-bit character per sequential INT16 register.

ASCII (UTF8)

The string is encoded as ASCII/UTF8 characters with 2 8-bit characters packed into each INT16 register. If this option is selected, you have the option to swap the byte order of the two characters in the register.

Modbus Parameter Alarm Settings

EZReporter Monitored Parameter alarm status can be defined as a Modbus input discrete.

Set failed alarm register state to True (1)

You can define whether a failed alarm generates a True (1) or False (0) state. By default a failed alarm will generate a “True” (1) state. Uncheck this checkbox if you want a failed alarm to generate a False (0) state.

Reset failed alarms when the Data Ready register is reset

The failed alarm status will be reset automatically when the next sample is processed. Alternatively, you can configure the alarm status to be reset when the Data Ready flag is reset.

Add or Edit Register

The EZReporter Modbus Module provides a couple of easy ways to add registers to the registers table. You can add single registers or you add a range of component registers containing component results.

Important: By default, most Modbus registers are “locked” to the EZReporter configuration file that was loaded when the register was defined. This is to ensure that the selected result is valid - different configuration files often have different component lists, sample information fields, and calculated results. This means that when the Modbus register table is updated at the end of a run, only the registers that match the current configuration file will be updated. Once a register has been created, the only way to change the linked configuration file is to delete the register and add it again with the new configuration file loaded.
However, you can choose to update a register with results from ANY compatible configuration file. You need to be careful when enabling this option since registers will only be updated correctly if the current configuration contains the same result as the original configuration file.

Add a Single Register

To add a new register to the Register Table in your Modbus configuration, click the “Add Register” button on the main Modbus Module panel:

![Add Register Button](image)

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

Select Result

You first select from a list of supported EZReporter results by first clicking the result type (Sample Information, Component, Total/Summary, Extended Fraction, Modbus, etc.) and then selecting the specific result from the list. A description of each result is also displayed when it is selected. Note that some results require an additional parameter to be selected: for example, if you select a Component result, you must also select the specific component. If an additional parameter is required, a drop-down list box is displayed allowing you to select from a list of items.
Select Modbus Register

After selecting the result for this register, you must next select the register address that the Modbus Master will use to access this specific result (see “About Modbus Registers” on page 3 for more information on Modbus registers and addressing).

A list of available register addresses is pre-loaded into the list box. This list will not include addresses that have already been assigned to other registers, and the range of addresses available will depend on the type of addressing you are using (Modicon vs Enron/Daniel). While it is possible to enter a register address manually, it is safer to select from the list so that you don’t choose an invalid address.

The Data Type (Boolean, Int16, Int32, Float, or String) for the selected result is displayed along with the corresponding register type. If you are using Modicon addressing and the result is either a Float or Int32, then “2X” is also displayed indicating that this result will occupy two sequential registers (at the selected address and the next higher address).

If the result is a string, then you will also need to specify the string length, which will determine the number of sequential registers required to hold the string characters.
Register Options

By default, Modbus registers are “locked” to the EZReporter configuration file that was loaded when the register was defined. This is to ensure that the selected result is valid - different configuration files often have different component lists, sample information fields, and calculated results. However, you can choose to update a register with results from ANY compatible configuration file. You need to be careful when enabling this option since registers will only be updated correctly if the current configuration contains the same result as the original configuration file.

If the selected result is defined as an Output/Holding Register (read/write), then you have the option to apply the register value to the corresponding sample result when processing. This allows the Modbus master to set a register value prior to the run and have that register value used in place of the raw result during processing. Currently, only the Sample Name, Operator, and Sample Notes results are enabled for this option.

Result Description

Finally, you can enter a description for this register/result. This description is displayed in the register table to help identify each register:

After setting up the register, click the “Save” button to add the new register to the end of the Register Table.

Special Modbus Results

There are additional special results that provide additional Modbus functionality. You access these results by selecting the “Modbus” result type:
Modbus Data Ready: This result is defined as a Boolean output coil (read/write). It is set to “True” (1) when the calculations are complete and all of the Modbus registers have been updated during sample processing. It is reset to False (0) after the Data Ready Reset Interval specified in the Server Settings. The Modbus Master can also reset this output coil to False (0) manually.

Modbus Refresh Registers: This result is defined as a Boolean output coil (read/write). If this output coil is set to 1/True by the Modbus Master, then the EZReporter Modbus Register table will be refreshed to reflect any new values written to holding/output registers by the Modbus Master. It is reset to 0/False after the register table has been refreshed.

Add Component Registers

If you want to add a component result for multiple components to the register table, click the “Add Components” button (or right click the register table and choose “Add Component Registers” from the pop-up menu).

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

First, choose from the list of components defined in the configuration file that is currently loaded – the components that are checked will each be assigned to an individual register. You can click “Select All” button to check all of the components or “Select None” to uncheck all of the components. Next, choose the specific component result you want to assign to these registers from the list.
The registers will be assigned sequential addresses starting with the address specified as the “Starting Register Address”. The address list box is pre-filled with available starting addresses. Note that if the selected result is a Float or Int32 and you have specified Modicon addressing, then each result will occupy two sequential addresses.

Finally, you can enter a Register Description. This description will be appended to the component name to identify the register/result in the register table.

After making your selections, click the “Save” button. A new register will be added to the end of the register table for each of the components that were checked:
Edit a Register

To edit a register that has already been defined in the register table, select the desired row in the register table and the click “Edit Selected” (or right click the row in the register table and choose “Edit Selected Register” from the pop-up menu).

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

If the configuration file defined for the selected register does not match the configuration file currently loaded in EZReporter, you will be prompted whether the correct configuration file should be loaded:

You can then make any desired changes to the settings for the selected register, and then click the “Save” button.
Delete Registers

To delete a register from the register table, select desired row(s) in the register table and click “Delete Selected” (or right click the row in the register table and choose “Delete Selected Register” from the pop-up menu).

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.
The “Delete Registers” option allows you to delete multiple registers from the register table at once by selecting the rows of all of the desired registers to be deleted. You will be prompted to confirm the deletion since deletion is not reversible.

<table>
<thead>
<tr>
<th>#</th>
<th>Register</th>
<th>Register Type</th>
<th>Data Type</th>
<th>Result</th>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>discreteInput</td>
<td>bool</td>
<td>Modbus Data Ready</td>
<td>C6+ default.cfgx</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>inputRegister</td>
<td>float</td>
<td>Nitrogen: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>inputRegister</td>
<td>float</td>
<td>Air: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>inputRegister</td>
<td>float</td>
<td>Oxygen: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>inputRegister</td>
<td>float</td>
<td>H2S: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>inputRegister</td>
<td>float</td>
<td>Methane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>inputRegister</td>
<td>float</td>
<td>Carbon Dioxide: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>inputRegister</td>
<td>float</td>
<td>Ethane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>inputRegister</td>
<td>float</td>
<td>Propane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>inputRegister</td>
<td>float</td>
<td>iButane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>inputRegister</td>
<td>float</td>
<td>nButane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>inputRegister</td>
<td>float</td>
<td>i-Pr: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>inputRegister</td>
<td>float</td>
<td>n-Pr: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>inputRegister</td>
<td>float</td>
<td>Hexane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>inputRegister</td>
<td>float</td>
<td>Water: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Using the Modbus Slave Server

The Modbus Module Panel

The Modbus Module is controlled entirely through the Modbus Module Panel that is displayed when you select the “Modbus” tab on the main EZReporter window.

Important: The Modbus Module is configured separately from the EZReporter configuration editor so that it can support result from multiple configuration files.

The “Modbus” tab is visible in Trial mode and also after you have activated the software if the Modbus Module is included in your license.

The Modbus panel contains three sections:

1) The Modbus Registers table, which contains a list of the registers that have been defined.
2) The Modbus Registers controls, which allow you to Add, Edit, and Delete registers from the Registers table.
3) The Modbus Server controls, which allow you to edit the server settings, start and stop the server, and print the current server configuration.

The Modbus Register Table

The Modbus Registers table contains the list of registers that are currently defined.

<table>
<thead>
<tr>
<th>#</th>
<th>Register</th>
<th>Register Type</th>
<th>Data Type</th>
<th>Result</th>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>discrete input</td>
<td>boolean</td>
<td>Modbus Data Ready</td>
<td>C6+ default.cfgx</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>inputRegister</td>
<td>int32</td>
<td>Current Configuration Sample Count</td>
<td>C6+ default.cfgx</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>inputRegister</td>
<td>float</td>
<td>Nitrogen: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>inputRegister</td>
<td>float</td>
<td>Air: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>inputRegister</td>
<td>float</td>
<td>Oxygen: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>inputRegister</td>
<td>float</td>
<td>H2S: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>inputRegister</td>
<td>float</td>
<td>Methane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>83.02</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>inputRegister</td>
<td>float</td>
<td>Carbon Dioxide: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>2.02</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>inputRegister</td>
<td>float</td>
<td>Ethane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>7.45</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>inputRegister</td>
<td>float</td>
<td>Propane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>4.39</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>inputRegister</td>
<td>float</td>
<td>n-Butane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0.83</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>inputRegister</td>
<td>float</td>
<td>n-Pentane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>1.08</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>inputRegister</td>
<td>float</td>
<td>i-Pentane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0.31</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>inputRegister</td>
<td>float</td>
<td>i-Butane: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>inputRegister</td>
<td>float</td>
<td>Hexanes Plus: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>0.3</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>inputRegister</td>
<td>float</td>
<td>Water: Raw (unnormalized) Amount</td>
<td>C6+ default.cfgx</td>
<td>1.618</td>
</tr>
</tbody>
</table>

The Register Table includes the following columns:

- **#**: The ID/Index number for the register.
- **Register**: The address of the register that the Modbus Master will use to access this specific result. Register addresses are linked to the Modbus table associated with the Register Type for each result (see below).

 Note: In Modicon addressing mode, Float and Int32 data types will occupy two sequential registers (Register and Register +1). Strings also occupy sequential registers. The number of registers required depends on the string length and encoding.

- **Register Type**: The Modbus table where the data for this result is stored. The Modbus Module stores results in four types of data tables: Input Register, Output (Holding) Register, Input Discrete, and Output Coil. The register type used is determined by the data type of the result.

- **Data Type**: The data type defined for the result. Options include Boolean (bit/discrete), Int16 (short, 16-bit integer), Int32 (long, 32-bit integer), Float (single-precision floating point), and String (ASCII or UNICODE).

- **Result**: The result description for the register.

- **Configuration**: The configuration file that was used to create the register. The register will only be updated when results are processed with this configuration file loaded.

- **Value**: The current value of the register.
Rearranging the Register Table

You can rearrange the rows in the register table by left-clicking the index column of the desired row, and dragging it to the desired new location. You can also sort the table based on the contents of a column by clicking the header text at the top of the desired column.

Note: Rearranging the order of rows in the register table has no effect on how the Modbus Master accesses the registers. It simply allows you to change the display order.

Starting the Server

In order for a Modbus Master to access the results in your Modbus register table via a TCP connection, the Modbus Slave Server must be started. To start the Server click the “Start Server” button on the main Modbus Module panel.

Note: You can also configure the Server to start automatically whenever EZReporter starts.

Windows Firewall Exceptions

If the Windows firewall is enabled on your system, you should see the following Windows Security Alert the first time you start the server. Make sure you check the appropriate networks, and then “Allow Access” to add exceptions for the Modbus Slave Server to the firewall.

Important: If you are using a third-party firewall you will need to add exceptions manually for the EZReporter program and TCP Port you have selected (502 by default). Please refer to your firewall documentation for instructions.
Modbus Server Status

The current status of the Modbus Slave Server is displayed on a color coded panel on the main Modbus Module Panel:

The Modbus Server status will display one of the following status messages:

<table>
<thead>
<tr>
<th>Status</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline</td>
<td>Gray</td>
<td>“Modbus Server is Offline” or “Modbus Server stopped by user”</td>
</tr>
<tr>
<td>Starting</td>
<td>Yellow</td>
<td>“Starting up Modbus Server …”</td>
</tr>
<tr>
<td>Started</td>
<td>Green</td>
<td>“Modbus Server started on TCP interface”</td>
</tr>
<tr>
<td>Shutting down</td>
<td>Yellow</td>
<td>“Shutting down Modbus Server …”</td>
</tr>
<tr>
<td>Error</td>
<td>Red</td>
<td>Details of the error message will be displayed</td>
</tr>
</tbody>
</table>

Network and Firewall Considerations

If a firewall is running on the computer, you may have to add exceptions to the firewall settings in order to allow the Modbus Master to establish a TCP connection to the Modbus Slave Server. If you are running the Windows firewall, the first time you start the Modbus Slave Server, you may be presented with the following security window:

Make sure to select “Allow Access”. This will add an exception to the Windows firewall settings for EZReporter for the specified networks.
If you don’t see this window, or you are using a different firewall, you may need to consult with your networking or security professional.

Stopping the Server

If you want to stop the Modbus Slave server, click the “Stop Server” button on the main Modbus Module panel:

![Stop Modbus Slave Server](image)

Note: If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to stop the Server. If you stop the Server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

Exiting EZReporter

When you exit the main EZReporter application with the Modbus Module active, EZReporter will try to stop the Modbus Slave Server before shutting down. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to exit. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

Updating Register Results

If the Modbus module is active, then the numeric values for each of the registers in the Modbus Register table will be updated whenever results are processed by EZReporter. The current value of each register is displayed in the “Value” column of the register table. If you have added the “Modbus Data Ready” result to the register table, then after all of the registers have been updated it will change to a value of “True” (1) for the duration of the “Data Ready Reset Interval” defined in the server settings, after which it will return to “False” (0).
Additional Options

The following additional options are available either via buttons on the main Modbus Module panel, or via the pop-up menu that is displayed when you right click on the Modbus Register table:

<table>
<thead>
<tr>
<th>Modbus Module Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Register...</td>
</tr>
<tr>
<td>Add Component Registers...</td>
</tr>
<tr>
<td>Edit Selected Register...</td>
</tr>
<tr>
<td>Delete Selected Registers...</td>
</tr>
<tr>
<td>Select All</td>
</tr>
<tr>
<td>Copy Selection to Clipboard</td>
</tr>
<tr>
<td>Print Modbus Configuration Report...</td>
</tr>
<tr>
<td>Save Modbus Configuration Report As...</td>
</tr>
<tr>
<td>Import Modbus Configuration...</td>
</tr>
<tr>
<td>Export Modbus Configuration...</td>
</tr>
<tr>
<td>Backup Modbus Configuration</td>
</tr>
<tr>
<td>Display Connection Statistics...</td>
</tr>
</tbody>
</table>

Print Modbus Configuration Report

You can print a report of the current Modbus configuration (Server settings and Register Table) either by clicking the “Print” button in the “Modbus Server” section of the Modbus Module panel, or by right-clicking the register table and selecting “Print Modbus Configuration Report” from the pop-up menu.
Save Modbus Configuration Report

You can save the Modbus configuration report to a PDF file by right-clicking the register table and selecting “Save Modbus Configuration Report As” from the pop-up menu. You will be prompted for the file name folder to save the report file.

Copy Modbus Table to Clipboard

This option will copy the rows and columns that are currently selected in the register table to the Windows clipboard. This can be useful if you want to paste the register table into Word or Excel for other reporting or documentation purposes.

Note: You can click “Select All” from the pop-up menu to select the entire register table.

Import Modbus Configuration

This option allows you to import a Modbus configuration from another system.

Note: The Modbus Slave Server must be stopped before you can make changes to the Modbus configuration. If the server detects that a Modbus Master is connected, you will be prompted whether or not you want to continue. If you stop the server with a Modbus Master connected, the Master will experience errors since the Slave will no longer respond.

Important: Since each Modbus register is linked to a specific configuration file, you will need to make sure that each configuration file specified in the register table is present on the system in order for the Modbus configuration to work as expected.

Export Modbus Configuration

This option will save the current Modbus configuration to an XML file so that it can be transferred to another system.

Backup Modbus Configuration

This option allows you to back up the current configuration to the EZReporter backup folder:

C:\Users\Public\Documents\Diablo EZReporter\Backup

The backup file is named “Modbus.backup-YYYYMMDD-HHMSS.xml” where YYYYMMDD-HHMSS is the date and time that the backup file was created.
Display Connection Statistics

This option displays information about the Modbus server and connection statistics:

Server Started
Displays the date and time that the Modbus Slave Server was started.

Server Up Time
Displays the amount of time that has elapsed since the Modbus Slave Server was started (Days:Hours:Minutes:Seconds)

Modbus Master Connection Status
The Modbus Master Connection Status will be “True” if the Modbus Slave Server detects that a Modbus Master is currently connected to the server and has performed a message transfer within the server timeout period. Otherwise the status will be “False”.

Message Transfer Count
Displays the Total and Successful number of messages transferred between the Modbus Master and Modbus Slave since the server was last started.
Index

A
About Modbus Registers 3
Add a Single Register 9
Add Component Registers 12
Add or Edit Register 8
Additional Options 22
ASCII (UTF8) 8
Automatically start Modbus Server on program startup 7

B
Backup Modbus Configuration 23

C
Configure Server Settings 5
Configuring the Modbus Module 5
Copy Modbus Table to Clipboard 23

D
Data Ready Reset Interval 7
Delete Registers 15
Display Connection Statistics 24

E
Edit a Register 14
Enron Floating Point and 32-bit Integer Support 4
Enron/Daniel Addressing 7
Exiting EZReporter 21
Export Modbus Configuration 23

H
Host IP Address 7
Host Name 7

I
Import Modbus Configuration 23
Installation 2
Introduction 1

L
Licensing and Activation 3

M
Modbus Address Shift 8
Modbus Module Specifics 1
Modbus Parameter Alarm Settings 8
Modbus Register Settings 7
Modbus Server Status 20
Modicon Addressing 7
Modicon Floating Point and 32-bit Integer Support 3

N
Network and Firewall Considerations 20

O
Overview 1

P
Print Modbus Configuration Report 22

R
Rearranging the Register Table 19
Register Options 11
Reset failed alarms when the Data Ready register is reset 8
Result Description 11

S
Save Modbus Configuration Report 23
Select Modbus Register 10
Select Result 9
Server Settings 6
Set failed alarm register state to True (1) 8
Slave ID 7
Special Modbus Results 11
Starting the Server 19
Stopping the Server 21
String Register Settings 8
String Support 4

T
TCP Port 6
The Modbus Module Panel 17
The Modbus Register Table 18
Timeout 6

U
UNICODE (UTF16) 8
Updating Register Results 21
Using the Modbus Slave Server 17

W
What is Modbus 3
Windows Firewall Exceptions 19